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Ray tracing method is used to study the propagation of collimated beams in a liquid–core cylindrical lens (LCL),
which has dual functions of diffusion cell and image formation. The diffusion images on the focal plane of the used LCL
are simulated by establishing and solving both linear and nonlinear ray equations, the calculated results indicate that the
complex imaging results of LCL in inhomogeneous media can be treated by the law of ray propagation in homogeneous
media under the condition of small refractive index gradient of diffusion solution. Guided by the calculation conditions, the
diffusion process of triethylene glycol aqueous solution is experimentally studied at room temperature by using the LCL in
this paper. The spatial and temporal concentration profile Ce(z, t) of diffusion solution is obtained by analyzing diffusion
image appearing on the focal plane of the LCL; Then, the concentration-dependent diffusion coefficient is assumed to be a
polynomial D(C) = D0× (1+α1C+α2C2 +α3C3 + · · · ). The finite difference method is used to solve the Fick diffusion
equation for calculating numerically the concentration profiles Cn(z, t). The D(C) of triethylene glycol aqueous solution is
obtained by comparing the Cn(z, t) with Ce(z, t). Finally, the obtained polynomial D(C) is used to calculate the refractive
index profiles nn(z, t)s of diffusion solution in the used LCL. Based on the ray propagation law in inhomogeneous media
and the calculated n(z, t), the ray tracing method is used again to simulate the dynamic images of the whole experimental
diffusion process to varify the correctness of the calculated D(C). The method presented in this work opens up a new way
for both measuring and verifying the concentration-dependent liquid diffusion coefficients.
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1. Introduction

Liquid–core cylindrical lens (LCL) is composed of

two different cylindrical lenses stuck together as shown in

Figs. 1(a) and 1(b), if two kinds of liquids with different re-

fractive indexes (RIs) are injected into the liquid–core suc-

cessively, the LCL will have the function of diffusion cell.

When the collimated beams enter into the LCL along the

path perpendicular to the axis of the lens, the image width

at different heights has one-to-one sensitive dependence on

the RI of the liquid at the corresponding height of the liq-

uid core.[1,2] The spatial RI resolution property of the LCL

can be applied to the study of the liquid diffusion process,[3,4]

the liquid hygroscopic process,[5] and the solid dissolution in

a liquid.[6] Diffusion coefficient is an important datum for

studying liquid mass transfer, and its accurate measurement

is of important scientific significance and application value

for chemical engineering, biology, medicine, environmental

protection, and other scientific fields.[7,8] Diffusion coefficient

is generally concentration-dependent. The traditional meth-
ods of measuring concentration-dependent diffusion coeffi-
cient require many diffusion experiments with different con-
centrations, which are time-consuming and tedious.[9,10] In
order to break these limitations, based on an LCL, a novel
optical method of measuring rapidly and verifying reliably
concentration-dependent liquid diffusion coefficient is demon-
strated in this work. However, there are two challenges to be
solved in measuring liquid diffusion coefficient by using the
LCL. First, due to the diffusion process, the spatial profile of
RI in the liquid core is not homogeneous and the ray’s prop-
agation in the inhomogeneous medium does not follow the
linear propagation property.[11,12] Therefore, it is necessary to
study the ray’s propagation and imaging law in the LCL com-
posed of inhomogeneous media. Second, the liquid diffusion
coefficient is dependent on the concentration in general, so that
the diffusion equation has no analytic solution.[13] The second
problem to be solved in the work is how to use numerical cal-
culation method to solve the diffusion equation, and obtain the
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concentration-dependent diffusion coefficient D(C) by com-
paring the calculated concentration profiles with experimental
diffusion images.

In order to solve the first problem, the spatial and tem-
poral RI profile ns(z, t) of the diffusion solution is obtained
by means of a special solution of the diffusion equation, i.e.,
an analytic solution as the diffusion coefficient is independent
of concentration,[1,13] together with the experimental relation-
ship between solution concentration and its RI. Then, a non-
linear ray equation, which is a 2nd-order differential equation
of ray propagation in inhomogeneous media, is established
and solved numerically in liquid–core region[14,15] Further-
more, when collimated beams pass through either the homoge-
neous (satisfying linear ray equation) or inhomogeneous solu-
tion (satisfying nonlinear ray equation),[17–19] the ray tracing
method is used to simulate the diffusion images on the focal
plane of the LCL. The computational results of two kinds of
diffusion images show that the imaging process in inhomoge-
neous solution can be treated approximately by the law of ray
propagation in homogeneous solution, under the condition of
small refractive index gradient of diffusion solution. Taking
for example the diffusion process of triethylene glycol (TG)
aqueous solution at room temperature (298 K), the conditions
of small refractive index gradient are that the difference in ini-
tial concentration between two diffusion solutions is less than
60% and the diffusion time is greater than 270 min.

In order to solve the second problem, the experimen-
tal diffusion processes of TG aqueous solution under the ini-
tial concentration differences of 0%–60% and 40%–100%
are studied in the LCL, and the corresponding experimen-
tal concentration spatial and temporal profiles Ce(z, t) of
the diffusion solution are obtained during the diffusion time
from 270 min to 540 min. Theoretically, the concentration-
dependent diffusion coefficient is assumed to satisfy the poly-
nomial expansion relation D(C) = D0 × (1+α1C +α2C2 +

α3C3 + · · ·), where D is the diffusion coefficient in an infinite
dilute solution which can be obtained by analyzing diffusion
images in the range of lower concentration; α1, α2, and α3

are under-determined parameters. Then, the finite difference
method (FDM) is used to solve numerically the Fick diffusion
equation under the initial and boundary conditions the same
as the experimental conditions,[20,21] the calculated concen-
tration profiles (Cn(z, t)) by varying the under-determined pa-
rameters are compared with the profile Ce(z, t), the parameters
(α1, α2, α3, . . . ) corresponding to the minimum concentration
standard deviation between Cn(z, t)s and Ce(z, t) are selected
to determine D(C).

To verify the correctness of the obtained D(C), on the one
hand, the D(C) is compared with the literature values mea-

sured by interferometry at the same temperature.[22,23] On the
other hand, the obtained D(C) is substituted into the diffu-
sion equation, the numerical solutions of spatial and tempo-
ral RI profiles nn(z j, ti) are calculated by means of the FDM.
Based on the ray propagation law in inhomogeneous media,
the ray tracing method is again used to calculate the dynamic
images of whole experimental diffusion process (from 25 min
to 540 min). The simulated results are in good agreement with
the experimental images in image contour, focal position, and
light intensity distribution, which verifies not only the correct-
ness of D(C) measurement results, but also the reliability of
treatment on ray propagation in the LCL composed of inho-
mogeneous diffusion solution in this work.

2. Analysis of image process
If two kinds of liquids with different values of RI of n4

and n1 (n4 > n1, the height of each liquid column is H) are
injected into the liquid core successively, and a complemen-
tary metal–oxide–semiconductor (CMOS) detector is placed
at the position where the RI (nc = n1) of upper liquid can
be sharply imaged, thus, the liquid below presents a diffuse
image as shown in Fig. 1(a). As the two liquids diffuse to
each other, the solution forms a dynamic RI gradient distri-
bution (n4 > n3 > nc > n2 > n1) along the diffusion direction
(z axis). If the detector is at the focal position of the LCL
( f = fc, n = nc), according to the linear propagation law of
ray in homogeneous media, the collimated beams entering into
the LCL on the xy plane keep propagating in the same plane
as shown by the dotted line in Fig. 1(b). The diffusion im-
age is sharply imaged at the position z = zc, while the detector
presents a “beam waist” shaped dispersion image at other lo-
cations of z 6= zc. As shown on the right of Fig. 1(b), its image
width (Wj) at the height of z j has a one-to-one sensitive depen-
dence on the RI (n = n j) of the solution at the corresponding
height z j, which can be uniquely determined by the geomet-
ric relation and imaging law shown in Fig. 1(c), or accurately
determined by experimental method.[24]

However, according to the ray propagation law in inho-
mogeneous media, collimated beams passing through the liq-
uid core will deviate from the entrance plane (xy plane) and
propagate as shown by the solid line in Fig. 1(b) due to the fact
that the RI of diffusion solution in liquid core is inhomoge-
neous along the z axis. Can the imaging law in homogeneous
media be used to treat approximately the imaging process in
inhomogeneous media, and can the light beam deviation from
entrance plane be ignored, under the condition that the spatial
and temporal RI profile of diffusion solution n(z, t) is undeter-
mined? This is what needs to be analyzed next.
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Fig. 1. (a) Three-dimensional (3D) imaging diagram of ray in homogeneous media, (b) 3D imaging diagram of ray in inhomogeneous media,
(c) two-dimensional (2D) imaging diagram of ray in homogeneous media (xy plane), and (d) 2D imaging diagram of ray in inhomogeneous
media (x′z plane).

3. Ray tracing algorithm in LCL

Based on the Snell law, the ray tracing method is used to
track the position of each collimated ray after passing through
the LCL and then hitting on a virtual CMOS detector. Light
intensity profile is obtained by counting up the ray numbers
reaching each pixel of the detector. As shown in Fig. 1(c), the
vertices of the four spherical surfaces of the LCL intersect the
x axis at a1, a2, a3, and a4, and their curvature radii are R1,
R2, R3, and R4, respectively. The lens material is K9 glass
(n = 1.5163). Taking for example one ray incident at point
P1(x1, y1, z1), its ray equations in different light paths are es-
tablished in the following.

3.1. Linear path of P1P2P1P2P1P2

After entering into the LCL through the 1st spherical sur-
face along the xy plane, the ray keeps propagating on the xy

plane (homogeneous media, n = n0) as shown in Figs. 1(c)
and 1(d). The coordinates of P1 (x1,y1,z1) = Pxy

1 can be calcu-
lated by the spherical surface equation (x−a1−R1)

2+y2 =R2
1

and the ray equation of the incident ray y = −h. The slope
of the normal line at P1 is k′1 = y1/(x1−a1−R1), the in-
cident and refractive angles on the 1st spherical surface are
θ1 = arcsin(h/R1) and θ ′1 = arcsin(sinθ1/n0), respectively.
The refractive ray intersects with the 2nd spherical surface
at P2 (x2,y2,z2 = z1) = Pxy

2 , and its slope is k1 =
∣∣∣ k′1−tanθ ′1

k′1 tanθ ′1+1

∣∣∣.
Therefore, the coordinates of P2 can be calculated by the linear
ray equation y = k1(x− x1)+ y1 and the 2nd spherical surface
equation (x−a2−R2)

2 + y2 = R2
2.

3.2. Nonlinear path of P2P3P2P3P2P3

Due to an RI inhomogeneous distribution along the z axis
in the liquid core, when the ray P1P2 enters into the liquid core
through the 2nd spherical surface, refractive ray P2P3 will de-
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viate from the xy plane propagate on the Pxy
2 Pxy

3 z plane (inho-
mogeneous media), and intersects with the 3rd spherical sur-
face at P3, as shown in Figs. 1(c) and 1(d).

The trajectory component of the refractive ray P2P3 in
the xy plane is Pxy

2 Pxy
3 , the slope of the normal line at Pxy

2 is
k′2 = y2/(x2−a2−R2), the incident and refractive angles on
the 2nd spherical surface are

θ2 = arctan
∣∣∣∣ k1− k′2
1+ k1k′2

∣∣∣∣
θ
′
2 = arcsin(sinθ2/n(z, t))

respectively. The Pxy
2 Pxy

3 satisfies the linear ray equation y =

k2(x− x2)+ y2, where the slope k2 of Pxy
2 Pxy

3 is

k2 =

∣∣∣∣ k′2− tanθ ′2
k′2 tanθ ′2 +1

∣∣∣∣ .
Therefore, the coordinates of Pxy

3 (x3, y3) can be calculated by
the linear ray equation y= k2(x−x2)+y2 and the 3rd spherical
surface equation (x−a3 +R3)

2 + y2 = R2
3.

To express the ray equation on the Pxy
2 Pxy

3 z plane, the
dynamic coordinate system x′z is established as shown in
Fig. 1(d). In the x′z coordinate system, the coordinates of P2

are x′ = x′2 = 0 and z = z2, and the line Pxy
2 Pxy

3 determines the
x′ axis. The path infinitesimal element of a ray propagating in
the x′z plane satisfies the geometric relationship as shown in
Fig. 1(d)

(ds)2 = (dz)2 +(dx′)2. (1)

Let γ2 and γ ′2 be the incident and refractive angles of the ray
along the z axis on the 2nd spherical surface, respectively, and
according to the invariant form of the Snell law in inhomo-
geneous media, n0 sinγ2 = n(z, t)sinγ ′2.[14] Based on the ge-
ometric relationship ds/dx′ = 1/sinγ as shown in Fig. 1(d),
the nonlinear ray equation in the liquid core is deduced in the
form of 2nd-order differential equation as

d2z
dx′2

=
1

2n2
0 sin2

γ

d(n2(z, t))
dz

, (2)

where the incident angle on the 2nd spherical surface is γ =

γ2 = 90◦, sinγ2 = 1, equation (1) becomes

d2z
dx′2

=
1

2n2
0

d(n(z, t)2)

dz
=

n(z, t)
n2

0

dn(z, t)
dz

. (3)

Equation (3) has no analytic solution in general, but its
numerical solution can be calculated on condition that the RI
function n(z, t) is known. For example, if the term on the right-
hand side of Eq. (3) is equal to the value of 2u at z = z1 and
t = t0, the nonlinear ray equation gives out a quadratic curve
on the x′z plane, which satisfies

z(x′) = ux′2 + vx′+w, (4)

where u, v, and w are undetermined coefficients. As the ray
enters into the xy plane perpendicular to the z axis, v = 0 and
w = z2 = z1. The ray equation on the x′z plane is z(x′) =
ux′2 + z2 that is, a nonlinear parabola equation. Substituting
x′3 =

√
(x3− x2)2 +(y3− y2)2 into Eq. (4), z(x′3) = z3. From

the complementary angle of the angle between the tangent line
of the point x′3 and the z axis, the incident and refractive angles
γ3 and γ ′3, are obtained.

3.3. Linear path of P3P4P3P4P3P4

As the ray leaves the liquid core from the 3rd spherical
surface, refractive ray P3P4 will propagate on the Pxy

3 Pxy
4 z plane

(homogeneous media, n = n), and intersect with 4th spherical
surface at P4, as shown in Figs. 1(c) and 1(d). The trajectory
component of P3P4 in the xy plane is Pxy

3 Pxy
4 , the slope of the

normal line at Pxy
3 is k′3 = y3/(x3−a3 +R3), the incident and

refractive angles on the 3rd spherical surface are

θ3 = arctan
∣∣∣ k2− k′3
1+ k2k′3

∣∣∣,
θ
′
3 = arcsin(n(z, t)sinθ3/n0),

respectively. The Pxy
3 Pxy

4 satisfies the linear ray equation y =

k3(x− x3)+ y3, where the slope of Pxy
3 Pxy

4 is

k3 =

∣∣∣∣ k′3− tanθ ′3
k′3 tanθ ′3 +1

∣∣∣∣ .
Therefore, the coordinates of Pxy

4 (x4, y4) can be calculated by
the linear ray equation y= k3(x−x3)+y3 and the 4th spherical
surface equation (x−a4 +R4)

2 + y2 = R2
4.

To express the ray equation on the Pxy
3 Pxy

4 z plane, the
dynamic coordinate system x′z is established on the Pxy

3 Pxy
4 z

plane as shown in Fig. 1(d). In the x′z coordinate system,
the coordinates of P3 are x′ = x′3 = 0 and z = z3, and the
line Pxy

3 Pxy
4 determines the x′ axis. The ray equation of P3P4

is z(x′) = kzx′ + z3, where kz = − tanγ ′3. Substituting x′4 =√
(x4− x3)2 +(y4− y3)2 into z (x′), z(x′4) = z4. The refrac-

tive angle γ ′4 can be calculated by the incident angle γ4 = γ ′3
and refraction law.

3.4. Linear path of P4P5P4P5P4P5

After the ray leaves the 4th refractive spherical surface,
refractive ray P4P5 will propagate on the Pxy

4 Pxy
5 z plane (homo-

geneous media, n = 1), and intersect with CMOS detection at
P5 as shown in Figs. 1(c) and 1(d). The trajectory component
of the refractive ray P4P5 in the xy plane is Pxy

4 Pxy
5 . The slope

of the normal line at Pxy
4 is k′4 = y4/(x4−a4 +R4). The in-

cident and refractive angles on the 4th spherical surface are
θ4 = arctan

∣∣∣ k3−k′4
1+k3k′4

∣∣∣ and θ ′4 = arcsin(n0 sinθ4), respectively.

084206-4



Chin. Phys. B Vol. 29, No. 8 (2020) 084206

The Pxy
4 Pxy

5 satisfies the linear ray equation y = k4(x−x4)+y4,
where the slope k4 of Pxy

4 Pxy
5 is

k4 =

∣∣∣∣ k′4− tanθ ′4
k′4 tanθ ′4 +1

∣∣∣∣ .
Therefore, the coordinates of Pxy

5 (x5, y5) can be calculated by
the linear ray equation y = k4(x− x4)+ y4 and CMOS plane
x = x5.

Like P3P4, the linear ray equation of P4P5 in x′z coordi-
nate system is z(x′) = kzx′+z4, where kz =− tanγ ′4, z(x′5) = z5

is given by x′5 =
√
(x5− x4)2 +(y5− y4)2. Hence, the coordi-

nates of P5(x5, y5, z5) on the CMOS plane are finally deter-
mined by the ray tracing method from the ray at incident point
P1(x1, y1, z1).

4. Simulation of diffusion image (1): determin-
ing experimental conditions

4.1. Special solution of diffusion equation in dilute solution

In ray tracing calculation, it is necessary to predetermine
the spatial and temporal RI profile of diffusion solution in the
liquid core. To do so, the one-dimensional diffusion process
shown in Figs. 1(a) and 1(b) is assumed to satisfy Fick sec-
ond law and initial and boundary conditions,[13] which are ex-
pressed by Eqs. (5) and (6), respectively,

∂C(z, t)
∂ t

=
∂

∂ z

[
D(C)

∂C(z, t)
∂ z

]
, (5)

{
C(z > 0, t = 0) =C1,

C(z≤ 0, t = 0) =C2,

{
C(z = H, t > 0) =C1,

C(z =−H, t > 0) =C2.
(6)

Here C(z, t) is the concentration space–time profile of the dif-
fusion solution, C1 and C2 are the initial concentrations, re-
spectively, on each side of the diffusion interface (z = 0). In
general, the diffusion coefficient is a function of the concentra-
tion, D = D(C), and equation (5) has no analytic solution. On
the condition of infinite dilute, the diffusion coefficient is in-
dependent of the concentration, D(C) = D, and equation (5)
has an analytic solution in the form of the Gaussian error
function:[25]

C(z, t) =
C1 +C2

2
+

C1−C2

2
erf
(

z
2
√

D0t

)
. (7)

Taking for example the diffusion process of TG aque-
ous solution at room temperature (T = 298 K), D = 0.730×
10−5 cm2/s can be known by analyzing an instantaneous dif-
fusion image.[1] The RIs of TG aqueous solutions with dif-
ferent concentrations are measured by an abbe refractometer,
and the relationship between RI and solution concentration is

n(C) = 0.1251C+1.3328 with a linear correlation coefficient
of 0.999. The unit of C is mass fraction, C = 1 and 0 refer to
pure TG and water, respectively. Substituting D and n(C) into
Eq. (7), the RI space–time profile ns(z, t) is obtained.

4.2. Comparison between simulation images in “homoge-
neous” and “inhomogeneous” media

For better understanding the influence of initial condi-
tions and diffusion time on diffusion image, as collimated
beams pass an LCL through “homogeneous” (ignoring ray de-
viation from entrance plane) or inhomogeneous solution, the
diffusion images on the focal plane of the LCL are simulated
based on the obtained ns(z, t) and the ray tracing algorithms
described in Section 3.

When the initial concentration difference is C2−C1 = 1.0
(100%), the simulated results are shown in the upper part of
Fig. 2, indicating that there are significant differences both in
image contour and in focus position as shown in Figs. 2(a)–
2(c) and Figs. 2(a′)–2(c′), existing between “homogeneous”
or inhomogeneous solutions. However, the differences de-
crease gradually with the diffusion time going by. The rela-
tive deviations of concentration between the images calculated
in “homogeneous” and inhomogeneous solutions show further
that the maximum value of deviation is 49.7% at t = 20 min
in Fig. 2(a′′), which decreases to 10.2 % at t = 270 min in
Fig. 2(c′′).

When the initial concentration difference decreases to
C2−C1 = 0.6 (60%), two kinds of diffusion images are also
calculated under the conditions of “homogeneous” and inho-
mogeneous solutions, and their results are shown in the lower
part of Fig. 2. Compared with the results of C2−C1 = 1.0
(100%), the differences in image contour and focus position
obviously decrease as shown in Figs. 2(d)–2(f) and Figs. 2(d′)–
2(f′). The maximum value of relative deviation is 26.6% at
t = 20 min in Fig. 2(d′′), which decreases sharply to 2.1 % at
t = 270 min in Fig. 2(f′′).

The simulation results shown in Fig. 2 demonstrate that
either reducing the initial concentration difference or increas-
ing the diffusion time can obviously lessen RI gradient of dif-
fusion solution, and then make the two kinds of simulated im-
ages more closer. In the case of TG aqueous solution diffusion,
the relative deviation of concentration between the two simu-
lations will be less than 2.1% as C2−C1 and diffusion time
are set to be 0.6 and larger than 270 min, respectively. Un-
der the premise of meeting the above conditions, it is reason-
able to treat the light beam as passing through “homogeneous”
solution, and the light beam deviation from entrance plane is
ignorable.
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Fig. 2. Comparison between two simulated results. (a)–(f): Simulated diffusion images in “homogeneous media”, where (a), (b), (c): C2−C1 =
1.0, t = 20, 150, 270 min; (d), (e), (f): C2−C1 = 0.6, t = 20, 150, 270 min; (a′)–(f′): simulated diffusion images in inhomogeneous media;
(a′′)–(f′′) the concentration relative deviations of two kinds of simulations.

5. Diffusion experiments and spatial and tempo-
ral concentration profile of TG solution
Based on the analysis in Section 4, under the conditions

of initial concentration difference C2−C1 = 0.6 and room tem-
perature (298 K), two groups of diffusion experiments of TG
aqueous solution are carried out to combine a complete con-
centration range from C = 0 to 1, the C1 = 0, C2 = 0.6 (0%–
60%) and C1 = 0.4, C2 = 1.0 (40%–100%) for the first and sec-
ond groups, respectively. Taking the first group for example, a
digital injection pump is used to inject 60% TG aqueous solu-
tion (C2 = 0.6) into the lower half of the LCL (H = 25 mm).
Waiting for 10 min to reduce liquid turbulence interference,
distilled water (C1 = 0) is slowly injected into the upper half of
the LCL at a speed of 2.0 ml/min (H = 25 mm), ensuring that
there is no significant convection interference between the two
liquids. The time when the two liquids contact each other is set
to be the initial diffusion time (t = 0). The CMOS detector is
fixed at the position where the collimated beam can be sharply
imaged in the liquid thin layer with RI (n) = nc = 1.3482, and
images are collected in the interval of 2 min. The experimen-
tal operation for the second experimental group is similar to
that for the first group, but the CMOS detector is fixed at the
position where the collimated beams could be sharply imaged
in the liquid thin layer with RI (n) = nc = 1.3994.

To simultaneously satisfy the diffusion time required by
the above simulated calculation and the initial conditions
in Eq. (6), diffusion images during 306 min–380 min and
450 min–540 min are selected to calculate the concentration-

dependent diffusion coefficients D(C) for the first and second
diffusion group, respectively.

The typical diffusion images are shown in Fig. 3, where
figures 3(a) and 3(b) show the diffusion images of the first
group at t0 = 320 min and 380 min. Figures 3(c) and 3(d)
show the diffusion images of the second group at t0 = 450 min
and 540 min. After the processing of the binarization digi-
tal image, the extraction of the image width, and the transfor-
mation of the image width and the solution concentration, a
series of experimental concentration spatial and temporal pro-
files Ce(z j, t)s are achieved. Some of curves corresponding to
those in Fig. 3 are plotted by the rectangular points as shown
in Fig. 4.
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Fig. 3. Typical experimental diffusion images for [(a) and (b)] 0%–60% dif-
fusion group at t = 320 min (a) and 380 min (b), and [(c) and (d)] 40%–10%
diffusion group at t = 450 min (c) and 540 min (d).
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6. Numerical solution of diffusion equation and
determination of D(C)D(C)D(C)

In general, the diffusion coefficient is dependent on con-
centration and written as D(C). The D(C) can be expressed in
the form of polynomial as

D(C) = D0(1+α1C+α2C2 +α3C3 · · ·), (8)

where α1, α2, α3, . . . are the undetermined coefficients, D is
the constant diffusion coefficient obtained by instantaneous
image analytical method under the infinite dilute condition,[24]

equation (5) can be expanded as

∂C(z, t)
∂ t

=
∂D(C)

∂ z
∂C(z, t)

∂ z
+D(C)

∂ 2C(z, t)
∂ z2 . (9)

Partial differential equation (9) has no analytic solution
on condition that the D(C) is undetermined. The algorithm of
FDM is used to calculate the numerical solution of Eq. (9) in
this paper. The spatial distance is divided into discrete M + 2
terms, j = 0 and M+1 are the boundary terms. Equations (9)
and (6) are changed into the difference quotient form, respec-
tively,

( ri
j+1
− ri

j−1

4
− ri

j

)
Ci+1

j−1 +(1+2ri
j
)Ci+1

j

+

(
−

ri
j+1
− ri

j−1

4
− ri

j

)
Ci+1

j+1 =Ci
j,

(z = jh, j = 0,1,2, . . . ,M+1), (10)


i = 0 (t = 0),
j > M/2+1, Ci=0

j =C1,

j ≤M/2+1, Ci=0
j =C2,



∞ > i > 0 (t > 0),
j = M+1, Ci

M+1 =C1, Di
M+1 = D0,

j = 0, Ci
0 =C2,

j < M+1, Di
j = D0×

[
1+α1Ci

j +α2

(
Ci

j

)2
+α3

(
Ci

j

)3
+ · · ·

]
,

(11)

where, ri
j−1

= (τ×Di
j−1)/h2, ri

j
= (τ×Di

j)/h2, ri
j+1

=

(τ×Di
j+1)/h2.

Equation (10) is further expanded into M linear equations

along the diffusion direction (z= jh, j = 0,1,2, . . . ,M+1). By

varying under-determined parameters [(α1)k, (α2)k, (α3)k], a

series of calculating Cn(z j, ti)s of Eq. (10) at a special mo-

ment ti = t is used to compare with the experimental profile

Ce(z j, t0), and standard deviation σk is calculated. The min-

imum value of σk is the best-fit parameters of TG at ti = t0,

the corresponding concentration values calculated are shown

in Fig. 4 by the solid lines. Cn
fit(z j, t0) and Ce(z j, t0) are in

good agreement in the whole concentration area, which indi-

cates that the D(C) relation calculated by comparing the ex-

perimental curve is reliable.

For the first diffusion experimental group, 10 diffusion

images acquired in the interval of 5 min during the period from
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305 min to 350 min, are used to calculate D(C) relations, the
average values are listed in Table 1, which satisfy D1(C) =

0.730× 10−5(1− 0.916C− 0.058C2− 0.045C3) cm2/s in the
concentration range from C = 0.0 to 0.6, and D1(C) versus
mass fraction C is shown in Fig. 5 by the red empty circles. For
the second group, 10 diffusion images acquired in the interval
of 10 min during the period from 450 min to 540 min, are

used to calculate D(C) relations, the average values are listed
in Table 2, which satisfy D2(C) = 0.730×10−5(1−0.860C−
0.008C2 − 0.006C3) cm2/s in the concentration range from
C = 0.4 to 1.0, and the D2(C) versus mass fraction C is shown
in Fig. 5 by the red solid circles.

To simply express the liquid diffusion coefficients D(C)

in the whole concentration range by one formula, let the diffu-
sion coefficients be D1(C) in the range of C = 0 to 0.4, D2(C)

in the range of C = 0.6 to 1.0, and average value of D1(C) and
D2(C) in the range of C = 0.4 to 0.6, the D(C) relation is refit-
ted by the least square method in the range of C = 0 to 1, the
fitted result is

D(C) = 0.7339×10−5

×(1−1.068C+0.444C2−0.2465C3), (12)

which is drawn by the red solid line in Fig. 5. For the con-
venience of comparison, the literature values of Ferna’ndez-
Sempere (1996)[22] and Bogachev (1982)[23] for the same dif-
fusion solution and temperature are also shown in Fig. 5,
which indicates that the values in the present paper are dis-
tributed between the two literature values, and much closer
to those measured by Ferna’ndez-Sempere with holographic
interferometry.[22]

Table 1. Measurement and calculation results of D(C) in a range of 0%–60% concentration.

D(C)/10−5 cm2·s−1

C/MF 0.0 0.1 0.2 0.3 0.4 0.5 0.6 α1 α2 α3

D305 min−350 min 0.730 0.663 0.594 0.525 0.454 0.381 0.307 –0.916 –0.058 –0.045
STD 0.00 0.001 0.002 0.003 0.005 0.007 0.010 0.008 0.019 0.022

RSD/% 0.00 0.151 0.337 0.571 1.101 1.837 3.257

D1(C) = 0.730×10−5(1−0.916C−0.058C2−0.045C3) cm2/s

Table 2. Measurement and calculation results of D(C) in a range of 40%–100% concentration.

D(C)/10−5 cm2·s−1

C/MF 0.4 0.5 0.6 0.7 0.8 0.9 1.0 α1 α2 α3

D450 min−540 min 0.478 0.414 0.350 0.286 0.222 0.157 0.092 –0.860 –0.008 –0.006
STD 0.002 0.003 0.004 0.004 0.004 0.005 0.006 0.006 0.003 0.003

RSD/% 0.418 0.725 1.143 1.399 1.802 3.185 6.522

D2(C) = 0.730×10−5(1−0.860C−0.008C2−0.006C3) cm2/s

7. Simulation of diffusion image (2) for verifying
correctness of measurement results

It is worth noting that equation (12) is reliable in the
whole diffusion process, though it is obtained by using the
images acquired during the diffusion time from 305 min to
540 min. A prominent advantage of measuring D(C) relation
introduced in the paper is that the correctness of deduced D(C)

can be verified by comparing simulated images with experi-
mental images in the whole diffusion process.

The algorithm of FDM is used to directly solve the dif-

fusion Eq. (5) under the conditions of Eq. (11) and deduced
D(C), and obtain the numerical solution of spatial and tem-
poral concentration profiles Cn(z jti) ( j = 0,1, . . . ,M + 1; i =
0,1,2, . . .). The Cn(z jti) are then converted into spatial and
temporal RI profiles n(z jti) ( j = 0,1, . . . ,M+1; i = 0,1,2, . . .)
by means of experimental relationship of n(C) = 0.1251C +

1.3328. The undetermined coefficient u in nonlinear optical
Eq. (4) satisfies the difference form

2ui
j =

ni
j

n2
0

ni
j+1−ni

j

h
=
[
0.0068Ci

j +0.0725
]Ci

j+1−Ci
j

h
. (13)
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Based on the ray equations derived in Section 3 and the
n(z j, ti), the ray tracing method is again used to calculate the
images at any diffusion time and any imaging position where
different liquid thin layers of RI can be sharply imaged. The
simulated images are compared with the experimental images
at the same conditions, which are shown in Figs. 6 and 7.

When the virtual CMOS detector is placed at the position
where the thin layer of RI = n = 1.3482 can be sharply im-

aged, the experimental diffusion images for the first group at
t = t0 = 25, 210, and 380 min are shown in Figs. 6(a′)–6(c′).
The two kinds of simulated diffusion images are also shown in
Fig. 6 for the convenience of comparison, where figures 6(a)–
6(c) are the images ignoring the ray deviation from entrance
plane and figures 6(a′′)–6(c′′) are the images that the ray de-
viation is calculated strictly when light ray passes through the
inhomogeneous solution in the used LCL.

nc = 1.3482
nc = 1.3482

nc = 1.3482

(a) (a') (a'') (b) (b' ) (

(

b'' (c')(c) (c'')

4
.5

 m
m

Fig. 6. Comparison between experimental diffusion images and simulated images at RI = nc = 1.3482 for the first diffusion group (0%–60%): [(a′), (b′),
(c′)] experimental diffusion images at t = 25, 210, and 380 min; [(a), (b), (c)] simulated images in “homogeneous solution”; [(a′′, b′′, c′′)]: simulated images
in inhomogeneous solution. Longitudinal scales represent solution concentrations.
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The comparison of the experimental diffusion images
with two kinds of simulated diffusion images clearly shows
some points as follows. (i) Under strict simulation condi-
tions, the simulated diffusion images shown in Figs. 6(a′′)–
6(c′′) are in very good agreement with the experimental im-
ages shown in Figs. 6(a′)–6(c′) in a wide diffusion time range
from t = 25 min to 380 min, whether on the image contours,
focal positions, or intensity distributions. (ii) Ignoring the ray
deviation from entrance plane, only at the later stage of the
diffusion process (t = 380 min), does the simulated diffusion
image figure 6(c) coincide with the experimental diffusion im-
age (Fig. 6(c′)).

As the virtual CMOS detector is placed at the position
where the thin layer of RI = n = 1.3994 can be sharply im-
aged, the experimental diffusion images for the second group

at t = t = 40, 360, and 540 min are shown in Figs. 7(a′)–7(c′).
The two kinds of simulated diffusion images are also shown in
Fig. 7 for the convenience of comparison, where figures 7(a)–
7(c) show the images ignoring the ray deviation from entrance
plane. Figures 7(a′′)–7(c′′) show the images that the ray devi-
ation is calculated strictly when ray passes through the inho-
mogeneous solution in the used LCL.

The same phenomena appearing in Fig. 6 are also found
in Fig. 7, implying that the location of virtual CMOS detector
does not affect the simulation calculation of diffusion image.
In addition, it is interesting to note that the focal positions of
the experimental diffusion images, marked by the dotted line
arrows both in Figs. 6 and 7 drift slowly upward with the dif-
fusion time going by. This macroscopic image movement is
caused by microscopic molecular thermal movement, and the
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simulated diffusion images reflect faithfully the law of thermal
movement.

Furthermore, as the location of virtual CMOS detector
moves to the position where the layer of nc = 1.3398 is sharply
imaged, the whole dynamic diffusion process is simulated and
compared with the experimental diffusion process. The com-
parison between two diffusion processes is shown in visual-
ization 1, which not only provides a vivid observation of the
dynamic diffusion process, but also shows a solid verification
of deduced D(C) due to the high consistency between the ex-
perimental process and the simulated process.

8. Conclusions
Ray equations in an LCL are established by using the ray

tracing method, and the diffusion images on the focal plane
of the LCL are simulated numerically, showing that the ray
propagation law in homogeneous media can be used to cal-
culate approximately the diffusion images in inhomogeneous
media under the condition of small RI gradient of diffusion
the solution. Based on the calculated conditions, the liq-
uid diffusion process of TG aqueous solution in the LCL is
experimentally implemented at room temperature, thus ob-
taining the liquid diffusion coefficient of TG aqueous solu-
tion D(C), which is dependent on the solution concentration.
The spatial and temporal concentration profile Ce(z, t) is ac-
quired by selecting the experimental diffusion images at the
late stage of the diffusion process. The D(C) is expressed in
the form of polynomial with a series of underdetermined pa-
rameters. The FDM method is used to calculate the spatial
and temporal concentration profiles Cn(z, t) of diffusion solu-
tion by varying the underdetermined parameters, and D(C) =

0.730×10−5(1−1.068C+0.444C2−0.2465C3) cm2/s is ob-
tained by comparing the Ce(z, t) and Cn(z, t). Based on the ray
equations and the RI spatial and temporal profiles n(z, t) in the
whole diffusion process calculated by the obtained D(C), we
simulate strictly the diffusion images in an inhomogeneous so-

lution. The simulated results are highly consistent with the ex-
perimental images in image contour, focal position, and light
intensity distribution, which verifies not only the correctness
of D(C) measurement result, but also the reliability of study-
ing ray propagation in the LCL composed of inhomogeneous
diffusion solution.
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